Knowledge of atomic interactions with high‐energy photons or particles has opened a window to the microscopic structures of materials. In particular, X‐rays and neutrons interact with electrons and nuclei of atoms in different ways, which enables their complementary scattering, spectroscopic, and imaging capabilities for structural characterizations. In the past decades, techniques based on X‐ray and neutron interactions, capable of being time‐resolved and combined, have been well developed for encoding structures in various length, elemental and temporal levels, and, in turn, have ignited breakthroughs in the field of battery science and engineering. Herein are reviewed the advanced in situ X‐ray and neutron techniques for studying lithium‐ion batteries, which offer dynamic observations of chemical, electronic, and geometric changes during realistic battery operations. For each of the techniques, with a brief description of the theory on account of characterizing principles is given (i.e., scattering, excitation, and emission), followed by an introduction of operando methodologies including instruments, setups, and cell designs employed in synchrotron and neutron beamlines. Finally, a few practical examples are presented to demonstrate the applicability of these techniques in studying Li‐ion batteries, with a particular emphasis on each of their structural sensitivities at various time, elemental, and length levels.
Read more at Small Methods:https://onlinelibrary.wiley.com/doi/full/10.1002/smtd.201900223
Comments